当前位置:首页 > Deepseek最新资讯 > 正文内容

DeepSeek的GRPO会导致模型崩溃?看下Qwen3新范式GSPO

3小时前Deepseek最新资讯18

  在 LLM 后训练阶段,似乎是一个强化学习的特殊形式。用于大语言模型(LLMs)微调的强化学习(RL)算法正沿着一条明确的演进路径持续发展。

  起初,OpenAI 开创了一种名为 基于人类反馈的强化学习(RLHF)的技术,用于改进 ChatGPT。RLHF 的核心是让人类标注员对模型生成的多种响应进行打分,并选出最优答案作为训练参考。这一过程虽然有效,但也耗时、昂贵且依赖人力,通常需要一支小型但专业的数据标注团队。

  DeepSeek 的重要创新在于用 RL 技术自动化了这一环节。算法不再依赖人工逐一评估,而是让模型在探索过程中,通过获得「奖励信号」自主学习正确行为,从而显著降低了成本,提高了效率,最终能以较低的成本实现高性能。

  在几个月前Qwen3 首次亮相的时候,其旗舰模型的性能就已经与 DeepSeek-R1、o3-mini、Gemini 2.5 Pro 等顶级模型表现相当。除此以外,Qwen3 系列模型覆盖了 MoE 模型和密集模型,每一款模型又有许多细分版本。

  最近,Qwen 团队发布了一篇有关其模型后训练算法的论文,似乎揭示了 Qwen3 模型成功的核心技术细节。

  最近 Qwen 的研究表明,使用 GRPO 训练大语言模型时存在严重的稳定性问题,往往会导致模型不可逆地崩溃。他们认为 DeepSeek 的 GPRO 方法存在一些严重问题:

  这一问题在 专家混合模型(Mixture-of-Experts, MoE) 中尤为严重,因为token 级别的路由变化会加剧不稳定性。

  为缓解这一问题,基于 GRPO 的训练流程通常需要依赖一些额外策略,例如 路由重放(Routing Replay)。

  因此,Qwen 团队声称 GRPO 的 token 级重要性采样无法达到稳定训练,其优化目标是「病态的(ill-posed)」。

  Qwen 团队指出,GRPO 的不稳定性源于其对 token 级重要性采样权重的错误使用。在强化学习中,重要性采样(Importance Sampling)用于校正行为策略(即用于收集训练数据的策略)与目标策略(当前正在优化的策略)之间的差异。

  当两者不一致时,重要性采样通过为已有数据样本赋予权重,使其更能代表当前希望优化的目标策略,从而提高训练的稳定性与有效性。

  在大语言模型(LLMs)的训练中,强化学习常常会复用旧策略生成的响应,以节省计算资源,这属于典型的「离策略」(off-policy)训练场景。重要性采样正是用于缓解这种策略不匹配带来的影响,并帮助稳定训练过程。

  然而,GRPO 将重要性采样的权重应用在每一个 token 上,而非整个生成的序列。这种做法会带来显著的方差,并在生成较长序列时造成「误差积累」与「训练不稳定性」。

  Qwen 团队指出,当在训练目标中应用此类重要性权重时,由于每个 token 的比值是独立计算的,会导致高方差的累积,从而破坏梯度稳定性,最终引发模型崩溃。

  同时,这种做法会将高方差噪声引入训练梯度中,尤其在长序列上呈现累积效应,并且在存在「裁剪机制」时,这种不稳定性问题会进一步加剧deepseek

  在所有展示的实验场景中,其新提出的算法 GSPO 均表现出比 GRPO 更高的训练效率。在 CodeForces 任务中,GRPO 的最终得分收敛于 2000 分以下,而 GSPO 随着训练计算量的增加持续提升成绩,展现出更强的「可扩展性」。

  正如其名称所暗示的,GSPO 的核心在于将重要性采样从 token 级转移至序列级,其重要性比值基于整个序列的似然度计算:

  这种采样权重的设计自然地缓解了逐 token 方差的累积问题,从而显著提升了训练过程的稳定性。

  需要注意的是,指数中的因子用于「长度归一化」。如果不进行长度归一化,仅仅几个 token 的似然变化就可能导致序列级重要性比值的剧烈波动,而不同长度的生成响应在目标函数中也将需要不同的裁剪范围,这会进一步增加训练的不稳定性。

  由于 MoE 模型具有稀疏激活特性,这会在使用 GRPO 时进一步加剧训练过程中的不稳定性。在经过一次或多次梯度更新后,相同响应所激活的专家网络可能发生显著变化。

  Qwen 团队在使用 GRPO 训练 48 层的 Qwen3-30B-A3B-Base 模型时发现:在每一次强化学习的梯度更新后,对于相同的 rollout 样本,新策略所激活的专家中约有 10% 与旧策略所激活的专家不同。这实际上意味着,每次梯度更新后,你都在用不同的数据样本训练不同的模型,毫无疑问这是一种极其低效的训练方式。

  在引入 GSPO 之前,为缓解这一问题,他们甚至采取了一种名为「Routing Replay」的技巧,即强制目标策略激活与旧策略相同的专家网络。

  相比之下,GSPO 无需使用 Routing Replay 也能实现稳定收敛,从而消除了不必要的训练复杂性,并保留了 MoE 架构的全部潜力。

  显著降低了方差,同时消除了对「路由技巧」(如 Routing Replay)等辅助策略的依赖;

  业界已普遍达成共识 —— 在大语言模型的后训练阶段引入强化学习,对于提升其推理能力至关重要。

  而论文中的大量实验结果也进一步证实,GRPO 所采用的「逐 token 重要性采样」方法存在不稳定性和低效性的问题。原文出处:DeepSeek的GRPO会导致模型崩溃?看下Qwen3新范式GSPO,感谢原作者,侵权必删!

标签: deepseek

“DeepSeek的GRPO会导致模型崩溃?看下Qwen3新范式GSPO” 的相关文章

为什么邓肯伤病后,依然高水平发挥,而09年加内特伤病后,33岁直接掉出一线内线行

为什么邓肯伤病后,依然高水平发挥,而09年加内特伤病后,33岁直接掉出一线内线行

  这是硬特的黑点,没得洗,但是你肯爷靠队友托底也好意思说了?0405打太阳头都被小斯锤爆了,总决赛靠资历抢了人家妖刀fmvp,0506季后赛队友犯错,直接次轮被干出局,0607遇到骑士可...

DeepSeek竞然算出了一台丰田埃尔法的实际生产成本

DeepSeek竞然算出了一台丰田埃尔法的实际生产成本

  标题:DeepSeek揭秘制造成本?AI算力与汽车工业擦出火花有关DeepSeek竟推算出丰田埃尔法真实成本的传言近期引发关注。多方信源显示,这家以AI服务见长的科技企业未直接参与汽车...

deepseek公布大语言模型部署方法专利

deepseek公布大语言模型部署方法专利

  天眼查App显示,近日,deepseek关联公司杭州深度求索人工智能基础技术研究有限公司申请的“一种大语言模型的部署方法及系统”专利公布。   摘要显示,该发明涉及人...

2025车网互动与信息通信融合发展专题研讨会成功召开

2025车网互动与信息通信融合发展专题研讨会成功召开

  7月25日,由中国能源研究会信息通信专业委员会主办的“2025车网互动与信息通信融合发展专题研讨会”在江苏无锡成功召开。会议通过现场参观、专题报告、专家研讨等形式,围绕车网互动政策支持...

智联交通 AI创未来|行车卫士三大AI升级引领车队运输智能化变革

智联交通 AI创未来|行车卫士三大AI升级引领车队运输智能化变革

  在数字化转型浪潮下,中移物联网有限公司行车卫士持续创新,深度融合AI技术,推出三大重磅升级——智能填单助手、AI多模态告警过滤系统及智能钥匙柜,为政企车队提供更安全、高效、智能的运输管...

DeepSeek下一代技术提前曝光,线上消费ETF基金(159793)翻红上涨

DeepSeek下一代技术提前曝光,线上消费ETF基金(159793)翻红上涨

  在ACL2025的颁奖典礼上,由DeepSeek梁文锋作为通讯作者、与北京大学等联合发表的论文荣获最佳论文奖。提出的原生稀疏注意力(NSA)机制,通过算法与硬件的协同优化,直接把长文本...